
N89- 25159 ..
DEVELOPMENT OF A MICRO-COMPUTER BASED

INTEGRATED DESIGN SYSTEM
FOR

HIGH ALTITUDE LONG ENDURANCE AIRCRAFT*

Davld W. Hall** & J. Edward Rogan***
by

ABSTRACT

In recent years, increasing attention has been given in the aerospace industry to integration of
aircraft design disciplines. This approach has been applied theoretically to sailplane design and to solar
powered high altitude long endurance (HALE) aircraft design. More recently, it has been applied to the
design of microwave powered aircraft. These studies describe attempts to arrive at integrated designs of
one class of aircraft using then-existing state-of-the-art computer capabilities. No attempt was made in any
of these cases, though, to use new programming techniques derived from Artificial Intelligence (AI)
research to develop more flexible systems for the conceptual design of HALE aircraft.

The purpose of this study was to investigate the feasibility of developing a general parametric sizing
capability for micro-computers using integrated design methodology implementing an existing HALE
methodology as a test case. The methodology described here incorporates some detailed calculations,
many qualitative rules-of-thumb and constraints which are not easily quantified except by the accumulation
of design experience. In this regard, the resultant software which will be developed in future efforts will be
a knowledge-based system for the conceptual design of HALE aircraft.

*

* *

This work was sponsored as a Phase I SBlR by the NASA/Ames Research Center, Advanced
Plans & Programs Office
David Hall Consulting, AlAA member
The Georgia Institute of Technology, School of Aerospace Engineering, AlAA member .**

275

INTRODUCTION

Advances in computing technology have made it possible to create a new kind of design tool.
Current generation CAD/CAE/CAM systems are based on an idea of the computer as a "number
cruncher"---computations are thought of as manipulations of numbers. This approach has led to an
emphasis on geometry representation and numerical techniques in engineering computing. Viewed in
this way, computers aid design, but are essentially external to the design process.

An alternative view of the computer has been around since Alan Turing's epoch-making work in
the 1930's: the view of computing as manipulation of symbols, (which might include numbers among
other things). The great beauty of Turing's work is in the intimate connection between the scientific
definition of what a computer is (it's called a Turing Machine) and aspects of mathematics as a language
that are among the most important scientific discoveries of this century (Kurt G6del's completeness and
incompleteness theorems).

What does any of this have to do with design or aircraft? After all, designers are notoriously,and
admittedly, innocent of mathematicsl. However, designers, like everyone else, use a language of
symbols to solve problems. The idea of a symbolic programming language for (aerospace)
design, clearly delineated and with most of the main pieces present, is the primary innovation of the
work described in this paper.

The application, if not the development, of a programming language for design must be graphical
since designers think graphically. A symbolic "design programming language" must provide the
designer with the means to describe design concepts and manipulate them in a convenient, but
disciplined, manner. Certainly, the language must provide the capability to describe (1) the air vehicle
itself ("What it is"), (2) the functional decomposition ("What it does") and (3) various approximate
theories, analyses and models which collectively describe "How it works".

What does it mean to execute or "run" (the word "interpret", in its everyday sense, rather than in
the specialized computing sense, is probably most accurate) computer programs written in such a
language? Interpretation of a computer program involves defining contexts (environments) in which
names (variables, attributes) are bound (assigned, set) to values (which may be numbers or other
symbols)? Procedures, in which the named variables appear as parameters, are then evaluated in the
environments. On the other hand, execution of an air vehicle design process involves exploring how
alternative design ideas fit together by preparing engineering drawings and performing analyses. The
process of making an engineering drawing is a decision-making process that results not only in the
design specification, but in the designer's understanding of how the final concept works and why
design decisions were made the way they were. It is this understanding that allows the designer to
conscientiously "sign off" that the design is correct in the designer's professional opinion.

The design programming language to be described in this report allows designers to use
computers to do design, rather than to aid design. This means that interpretation of computer
programs written in the design programming language must support the design decision-making
process. Designers must be able to use computer programs written in the "programming language for
design" to gain a technical understanding of the way the aircraft will work and might fail, and to develop
and communicate their rationales for design decisions.

Background

A programming language for design is a "knowledge-based system" in the sense that the basic
architecture (knowledge-base, inference engine, problem state or context) and the techniques used for
structuring and interpreting computer programs (inheritance, constraint propagation,
objects/modularity/state, data and procedure abstraction, and metalinguistic abstraction) are basically
the same. However, a "programming language for design" is far from being an "expert" system. The
idea of an expert system is that once knowledge has been extracted from the expert (or experts), the
computer program is able to reach conclusions that can be logically inferred from the rule base with only
minimal human intervention. The implication is that novices would then be able to tackle many of the
problems that can nowadays only be solved by experts. In contrast, the programming language for
design is a tool specifically for use by expert aircraft designers. The intention is to accomplish the kinds
of productivity gains for aircraft designers that word processing provides for authors and secretaries, or
that symbolic mathematics programs (e.g., MACSYMA or SMP) provide for mathematicians and other
scientists.

An example is a decision-oriented (rather than drafting oriented) user interface for preparing
aircraft three-views. An important insight resulting from the research is that a fundamentally wrong turn
is being taken with the introduction of three-dimensional geometry in the very early phases of
conceptual design in that the declsion-support aspects of the three-view drawing have been
overlooked in favor of the product deflntlon advantages of three-dimensional surfaced geometric
models. The three-view drawing is a classic example of the suppression of non-essential detail
(required to implement a 3-0 model) in order to emphasize critical design aspects: placement of landing
gear, pilot visibility, wing planform shape, static stability, propulsion integration, etc. The three-view
should properly be used to make these design decisions. Three-dimensional surface definition should
then be developed by interpreting the three-view drawing. Procedures for interpreting three-views
would be implemented using the computer programming language for design.

Successful implementation of the integrated design system for rnicro-computers will accelerate
the use of computers to do design, increasing product quality and reducing the length of the
development cycle by allowing designers to look at a broader range of design concepts. Additional
benefits obtain if the use of a computer programming language for design is carried forward into
preliminary design, detailed design, production, and support phases of the system life cycle. Here, the
ability of computers to manage complexity and detail would be invaluable. The idea that a product
decision history, represented by a portion of the computer programs for the design, could be carried
onboard each "tail number" and used to assess the impact of maintenance actions and for configuration
control has considerable appeal for long-life, high-value systems such as aircraft and reusable
spacecraft.

The advantages of a computer programming language for design are clear. The question
remains, "How can a design computing language be implemented?". The answer to this question
begins with an assessment of some alternative approaches to applying advanced computing
technology to design, comparing and contrasting them with our technical approach. From this
discussion will emerge key issues that must be addressed to establish proof-of-concept for the design

277

computing language. These issues then provide a backdrop for the technical discussions, results and
conclusions which follow.

AI te rnative Approaches

I The design computing language being developed at QHC, (called "windframe") is one of
several design tools that could justifiably be said to represent the next generation. These alternative
approaches are in various stages of maturity, ranging from research projects to small, new-start CAD
companies and new directions being taken by established CAD vendors. One of the first projects to
break ground in design computing languages was the Paper Airplane project at the Massachusetts
Institute of Technology 3. Paper Airplane contributed the idea that constraint propagation could be
used in conjunction with a symbolic representation of design "attributes" and relationships among those
attributes to free the designer from the tendency of FORTRAN synthesis programs to have "hard-wired"
design decision paths. Newton's method was applied in a single variable to solve the constraints in the
"backward direction. Paper Airplane, written in the LISP programming language, was envisioned
primarily as a tool for conceptual design.

Rubber Airplane, currently being developed by Mark Kolb at M.I.T., was started as a result of a
technical exchange between Dr. Elias and Randy Smith, then (December 1985) at The
Lockheed-Georgia Company 4. Smith had been working on a FORTRAN code for parametric geometry
and 3-0 surface definition, called GRADE. In his Rubber Airplane work, sponsored by the NASNAmes
Advanced Plans and Programs Office, Kolb continues to apply a constraint propagation technique
based on the successful Paper Airplane ideas (Rubber Airplane is written in Common LISP). However,
Rubber Airplane provides components, which are similar (from a design point of view) to the
components defined in GRADE (except that the designer has much more flexibility). Rubber Airplane
also provides design links between components. Paper Airplane was originally developed on a VAX
using Franz Lisp. Rubber Airplane is being implemented on Texas Instruments Explorer workstations,
although it also runs on Symbolics LISP Machines.

At about the same time Elias was starting work on Paper Airplane, Larry Rosenfeld was developing
a parametric geometry modeller that eventually evolved into the CAD systems. The details of how
CAD works are rather closely guarded; however, it can be noted that the system provides an advanced
parametric surface definition capability and demand-driven propagation of symbolic and numeric
constraints. Constraint propagation does not appear to be as powerful as those in Paper Airplane and
Rubber Airplane because it works only in one direction. An often-cited problem with CAD is that the
user/designer interacts with the system primarily by programming in a LISP-like design programming

the structure of the design concept representation: the design is represented as a hierarchical tree of
parts, linked by relationships that are not given any special structure. Early versions of CAD ran primarily
on Symbolics LISP Machines, but the product is becoming available on other workstations with fast LISP
software.

I
I

language, the CAD Language. A feature of CAD that is important for comparison with windFrame is

Dr. Gene Bouchards work at The Lockheed Aeronautical Systems Company should also be
mentionede. Details of the system are proprietary, except that the system is LISP-based, runs on the
Symbolics, and provides a valuable graphical programming user interface. Bouchard has focused on
providing designers with a quick turnaround trade study capability. Parametric surface definition
capability is planned lor the system but has not yet been implemented.

lntergraph Corporation made the decision about four years ago to implement their
Non-Uniform-Rational-B-Spline (NURBS) package using object-oriented techniques in the C
programming language. This has provided them with a significant fallout design programming language

I 278

capability, although the system is primarily oriented toward geometry definition, rather than design
decision-making7.

The Cognition system attracted considerable attention when it first appeared, offering an
attractive object-oriented drawing interface linked with on-line standard handbook@. Constraint
propagation was provided through the solution of relatively large multi-dimensional Newton-Raphson
methods. The Cognition system was written in Mainsail, a LISP-like object-oriented language.

windFrame was conceived to explore areas of design computing languages that were not being
emphasized by any of these products or projects. These areas were

Apply optimization as a constraint propagation technique and use decomposition
and parameter passing to limit the extent of constraint propagation.

Base the organization of the language around Systems Engineering discipline,
especially explicit description of design function .

Focus on aircraft design and develop the system through walkthroughs of a
proven aircraft design methodology, working closely with an experienced aircraft
designer.

Develop a system that would run on a relatively inexpensive micro-computer and
plan to place the system in the public domain.

Base the development of the language on the user interface.

Design the computer programming language so that it could be used throughout
the life cycle of an aircraft.

Focus on design decision-making.

Use approximation techniques to provide interactive explanation and "What if?"
analysis as part of the constraint propagation.

Issues that have been addressed to date include:

b Is object-oriented programming the "best" way to implement a design language?
If not, what replaces or complements it?

b What "objects" (or their equivalents) are needed to organize the language around
Systems Engineering disciplines?

How can Dr. Sobieski's (NASNLangley Research Center Interdisciplinary
Research Office) decomposition techniques be extended to apply to discrete
parameters?

How can constraint propagation problems be formulated as optimization
problems?

Is there a suitable programming environment to support high productivity
user-interface-oriented programming on the Macintosh? Can critical capabilities
for the design language be demonstrated in such a programming environment?

What would one experienced aircraft designer want the user interface to look
like?

If the system were available in the public domain, what kinds of users would be
interested?

DESIGN OF THE windFrame LANGUAGE

Considerable emphasis has been placed on the design of the windFrame language itself. The
success of this effort can be judged by the fact that the results seem somewhat obvious in hindsight.
However, details of the structure of the language strongly influence how it will be used. The difficulty of
identifying a good set of basic elements for the language can be seen in the wide disparity of choices of
these elements in the alternative next generation design tools discussed above. The technical
approach taken in this effort has been to select an initial set of basic elements based on ref. 10, and
then to evaluate this choice of elements by a "walkthrough" of an existing design methodology in close
association with an experienced aircraft designer. Alternative computer programming techniques for
implementing the basic windFrame language elements were then investigated.

The Architecture and Integration Requirements for an ULCE Design Environment study1 0
represents one step in the direction of bridging the gap between systems engineering discipline and
traditional airplane design practice1 1. This study took a dramatically different approach to the integration
of downstream concerns (such as supportability and producibility) into early design decision-making.
Specifically, the study took a fundamental look at the subtext of what designers do; that is, the things
designers do without thinking about them. This aspect of the study is also highly relevant to the design
of the windFrame language. From this point of view, the design process is not static, but highly
dependent on the technical content of the design concepts and on the nature of the requirements.
The ref. ! O study also highlighted the decision-making aspects of design, as opposed to the
generation of product definition data. One of the conclusions of this study was that the architecture of
Unified Life Cycle Engineering as a process must include

1) the generation of design alternatives,

2) planning of the decision-making process based on the technical content of these
alternatives, and

3) execution of the design decision-making process (Figure 1).

The intermediate planning step thus involves "design of the design process", and is therefore a
"meta-design process". Development of design deliverable data items, such as engineering drawings,
was viewed as an output of the decision-making process. Parametric definition of concepts to be
specified by these deliverable engineering drawings was to be established as part of the original
description of the design alternative.

280

A1 ternatives Decisions Decisions

FIGURE 1. ULCE (META) DESIGN PROCESS ARCHITECTURE.

Advances in computing technology were an early motivating force for the USAF Project Forecast
I1 Unified Life Cycle Engineering (ULCE) initiative. The ref. 10 concept was based in part on the use of
a parametric design description and specification language for capturing design alternatives in step 1
(Generate Design Alternatives) of the ULCE process. The study was performed by an interdisciplinary
team including engineers from preliminary design, supportability, and producibility, as well as design
technology. As a result, the need for a systems engineering approach, and specifically for an explicit
description of system function as a part of the design language was made very clear. Explicit
description of function allows an interdisciplinary design team to organize various theories, models, and
analytical tools representing different views of how a single system function is performed. This
organization is essential for engineers of different technical backgrounds to be able to recognize how
these different views interact to make the system work or fail.

The windFrame language was specifically developed to address these needs. Basic elements of
the windFrame language are a precursor to the system hierarchy, called the "muItiHierarchy", an
explicit description of the functional decomposition (functionDecomp). The designer defines theories
and models (theories&Models) at the intersection of the multiHierarchy (which describes alternative
system implementations), and the functionDecomp. The theories and models define how the system
concept elements associated with specific alternative implementations work to accomplish a given
function. Explicit representation of system function allows more than one view of (and associated
theories and models for) that function. In casual terms, the functionDecomp provides"hooks on which
to hang different ways of looking at the same thing." Similarly, explicit representation of theories and
models in the windFrame language allows multiple levels of approximation and alternative ways of
predicting closely related phenomena, essential in applied aerodynamics (e.g. closed-form
approximations, lifting-line, panel, and flowfield methods). The fourth and final basic element of
thewindFrame language is the design decision (designDecisions).

One way of thinking about how such a next-generation design environment might be used is that
the designer defines the system, performs engineering analyses, and makes design decisions using
computer programs that function as integrated "executive", "user interface", and "database" software.
Integrating the executive, user interface, and database makes it possible for the software to represent
the state of the design process, thus such a tool might be viewed as capturing the "design-in-process''
(Figure 2).

Evidently, development of a computer program performing all three of these functions is a highly
complex software engineering problem, even for a specific domain area such as aircraft design. In this
area, our technical approach has been to apply programming techniques such as inheritance; constraint
propagation; data and procedure abstraction; modularity, objects, and state; and metalinguistic
abstract io$.

28 1

Design Environment - Funcfiim..l

S y s t e m Definition
- Product
- Manufacturing process
- Support environment

Yi-e w

Decision Support

-- F, Design-in-Process

Analysis and

FIGURE 2. DESIGN-IN-PROCESS.

Work began using the MacScheme programming language on the Macintosh SEI? The idea was
to implement the basic elements of the windFrame language using block structure and
make-environment for modularity. However, this approach was unsatisfactory, primarily because the
resulting design computing language was already highly "LISP-like" at the earliest phases of
development. Our development philosophy has been, and continues to be, to develop a tool that
designers will want to use through intermediate steps that designers would also want to use. Thus far,
the LISP programming language has failed to gain wide acceptance among airplane designers, in spite
of its obvious advantages. Preliminary experimentation with Hypercard established that (1) the basic
windFrame elements could be implemented using HyperTalk, (2) instantiation, inheritance, and
constraint propagation could be supported, and (3) the resulting design language was highly graphical
and accessible to aircraft designers. The discussion and results in this report are based on the
Hypercard approach.

The windFrame language, based on HyperTalk, allows designers to write computer programs
using a highly graphical, user-interface oriented programming environment. These programs define
design concepts (in terms of "what the concept is", "what it does" and "how it works"). The programs are
"object-like" in that they represent prototype design concepts which can be instantiated. Based on the
technical content of these descriptions, the designer writes more computer programs which manage
the user interface for decision support and control instantiation of the design concept "objects". These
designDecision programs are also "written" in the highly graphical, user-interface oriented style
encouraged and even enforced by Hypercard. Writing the designDecision computer programs will be
partially or completely automated once a basic set of decision tools has been established. The design
process is then an interactive execution of the design decision programs.

The idea of controlling constraint propagation, instantiation, and inferencing through interactive
designDecision object-like elements of the windFrame language is original with this study and is one of
the key innovations of the David Hall Consulting technical approach. The way designDecision elements
will work is probably best explained by the following examples. The first example looks at the impact of
designDecision-making on the precursor to the system hierarchy (rnultiHierarchy). This example clearly
shows how the multiHierarchy evolves into a system hierarchy as a result of executing the design

28 2

decisions. It should be emphasized that this process is mapped directly into the windf-fame design
language. The second example illustrates how one type of interactive decision support interface for a
designDecision might look. This example also clarifies the role of design- Decisions in managing
instantiation of design concept "objects".

A discussion of the impact of design decisions on the multiHierarchy must be introduced with
some additional background on the basic structure of the multiHierarchy . Recall that the multiHierarcy
is used to define "what the system is". In the windFrame langage, the system definition is made up of
conceptElements. For example, the high altitude long endurance aircraft itself would be a
conceptElement in windFrame . "conceptElements" have attributes associated with them. Continuing
the high altitude long endurance aircraft example, attributes associated with the aircraft
conceptElement would include takeoff gross welght, configuration, propulsion, and so on. In
specifying a value for an attribute, the designer can choose from among several alternatives.
Alternatives for the conflguratlon attribute of a high altitude long endurance aircraft might include
pusher, jolned-wlng, canard, three-surface, and conventional tallplane (Figure 3).

CONFIGURATION CHOICE IS FLEXIBLE

Conuentional Layout Pusbr Layout

A

Joined Wing Sometking Weird

FIGURE 3. ALTERNATIVES FOR CONFIGURATION ATTRIBUTE.

Alternatives for the takeoff gross weight attribute could be described as "positive
dimensioned real numbers". Writing software procedures to handle "positive dimensioned real
numbers" (e.g. converting units, finding non-dimensional combinations of parameters, math functions)
is completely straightforward, so it makes sense to say that takeoff gross weight is completely
specified (as an attribute in windFrame ---of course no value has been selected for it yet) by saying that
it is a "positive dimensioned real number". Not so with the conflguratlon attribute , which seems to
need further description.

How should the multiHierarchy description be carried forward for attributes such as
configuration? The approach taken in windFrame is to recognize that the distinctions between
alternatives for complicated attributes (like conflguratlon) arise from the fact that different concepts
are associated with each alternative. For example, the canard alternative includes a canard
conceptElement (as does the three-surface alternative), while the conventional tallplane

28 3

alternative does not. windFrame thus tackles specification of complicated design ideas through a
conceptElement-attribute-alternative-conceptElement tree structure, the multiHierarchy which is
shown in Figures 4 through 9.

The multiHierarchy evolves into a classical systems engineering tool, the "system hierarchy" 11.
The designer uses the object-like designDecision elements of the. windFrame language to select
among alternative design concepts. The designDecision elements of windframe manage the partial
instantiation of design alternatives needed to apply the engineering analysis procedures contained in
the 'theories &Models. The designDecision elements of windFrame collectively provide the designer
with interactive control over constraint propagation, while keeping track of intermediate results and
partially defined alternative configurations and accumulating approximations to design goals,
requirements, and constraints as surfaces that delimit the design space. This information is used in
windFrame to provide interactive explanation-oriented constraint propagation.

mmpifi'emni .'

a?termtiw

FIGURE 4. MULTIHIERARCHY TREE STRUCTURE.

rfiribut8

&/termttI*u \ &tfrtbuf8< - &/t0rmftl.r - rlt8rmttl.r

&/t8rmftl.w

FIGURE 6. "ATTRIBUTES THAT ARE COMPLETELY SPECIFIED . . ."

FIGURE 7. " . . . BECOME PART OF THE CONCEPTELEMENT SPECIFICATION."

FIGURE 8. "ATTRlBUTES THAT FAN OUT TO ANOTHER LEVEL OF CONCEPTELEMENTS . . ."

28 5

FIGURE 9. " . . . DEFINE THE NEXT LEVEL OF THE SYSTEM HIERARCHY."

One of the results of the design decision-making process supported by windFrame is the (aircraft)
system specification. Development of the system specification is controlled by the designer through
the designDecisions. Looked at from the point of view of the multiHierarchy as it evolves into the
system hierarchy, designDecisions bind attributes to one of their alternatives (Figure 5).

Attributes that are completely specified by this binding (e.g., once a "positive dimensioned real
number" has been chosen for takeoff gross welght, no additional specification is needed) become
part of of the conceptHement specification (Figures 6 and 7). Attributes which fan out to another level
of conceptHements (Figure 8) define the next level of the system hierarchy (Figure 9). An important
aspect of the design of the windFrame language is that the subtle distinction is clearly made between
specifying levels of the system hierarchy through the design decision-making process and specifying
levels of design alternatives (by creating a multiHierarchy down to some level of description). This
aspect of windFrame gives the design language enough expressive power to capture "levels of
approximation"which are needed for various1 theories&Mode/s. In fact, the level of approximation of a
theory/Model is essentially the amount of depth in the multiHierarchy that must be instantiated in order
to apply that theory/Model.

designDecision elements of the windFrame language are used to partially instantiate "object-like"
pieces of the design concepts described by the multiHierarchy and theories8iModels. Only those
attributes of the design concept needed to perform an evaluation of the concept against design goals,
criteria, and requirements are bound to alternative values. This binding is made in a context (in the
sense of interpretation of a computer program discussed above) that is managed by the designDecision
element. This context is exploratory. Not all the partially instantiated designs in this context will meet
requirements. Some of them may be inconsistent or infeasible.

One type of windFrame interface that is used by the designer to control this instantiation and
evaluation process has the appearance of a set of one-dimensional, two-dimensional, carpet, or other
types of plots used for presenting aircraft design and performance information. Another interface,
appropriate for discrete, qualitatively different alternatives, is a "trade table" 11. Both of these classes of
decision support tools are familiar to designers. There are limitations to the use of these classical
decision support interfaces, however. Their succesful use depends on the designer's ability to set up a
design decision process that will rapidly converge on a satisfactory design solution. One of the risks
inherent in the integration of new technology is that coming up with a good design process is basically
the same problem as coming up with a good design.

286

The development of the windFrame language will make it practical to provide designers with some
tools for "designing the design process". The technical approach is to use local optimization and
parameter passing to formulate the design process as a network of interrelated decisions. Initial
sensitivity and examination of design alternatives are applied to identify sequences of design decisions
that have good convergence. As the design space is explored, approximation techniques can be used
to build models of complex interactions between design attributes and requirements. The process
comes full circle when these approximations are plotted and trade tables are made up using the
"classical" decision interfaces. An "explanation" process, using both the "classical" decision interfaces
and the design space approximations, can be used by the designer to "design a new design
process"---at the same time the designer is designing a new type of aircraft.

The second example illustrating the role of designDecisions in windFrame is closely linked with
these ideas. A prototype decision support interface for exploring the design space would consist of a
collection of x-y plots of one attribute against another (Flgure 10). For example,,the attributes could be
wlng loading and power loading. (The values shown in Figure 10 are screen coordinates at the
location of the "design instance"). Within allowable limits on alternative values for wing loading and
power loading, any point on the plot corresponds to a partial specification of a design. Of course, this
information, along with appropriate fheories&Mode/s may be sufficient to evaluate these design
alternatives (e.g., against FAR 23.67). Using the mouse with appropriate pull-down menus and/or
Hypercard "buttons", the designer can 1) create an interface to access a partial instantiation of a design
alternative in the context of this designDecision , 2) interpret computer programs to create the partial
instance itself, and 3) evaluate the partial instance using appropriate theories&Mode/s. Results of these
evaluations can be accumulated in the designDecision context and used as the basis to construct
design space approximations.

The decision support interface in this example (Figure 10) is based on a technique for
constructing multidimensional quadratic splines based on systematic evaluation of design alternatives.
The simplex pattern referred to in Figure 10 (drawsimplex---top "button" on right hand side of screen
and moveSimplex) is a pattern used in Experimental Design. A simplex is made up of the minimum
number of points in n-dimensional space required to construct a first-order (linear) model. A
"zero-dimensional'' simplex is a point, a one-dimensional simplex is a line (two endpoints), a
two-dimensional simplex is a triangle (three corner-points), a three dimensional simplex is a tetrahedron
(four corner-points), and so on. The n+l points in the simplex must be arranged so that substituting the
points XI, , xn+l (these points are n-dimensional vectors) into the linear model results in n+l
independent equations:

The equations can be inverted to give a unique solution for the coefficients ai of a linear
approximation to an unknown math function F(x). The technique uses the idea that exploration of a
design space usually involves evaluating designs on adjacent simplices. If the first derivatives of F are
continuous across the boundaries between these adjacent simplices, then a second-order spline
approximation to F can be found that fits the design points within each simplex and is continuous
across the simplex boundaries. For a pattern of two simplices in two-dimensional (xi , x2) space, with the
common boundary at x1=0, the spline equations are

28 7

a1 = b i
a12 = b12
a22 = b22
a2 = b 2
a0 = bo

This gives 5 equations for the 8 unknowns in the two quadratic approximations (one on each
simplex) :

The remaining 3 equations can be used to fit the spline near some design alternatives within the
simplex boundary that are of interest. These approximation techniques are more qualitative than
quantitative, in the sense that they are used by the designer to guide exploration of the design space
and to dynamically estimate stability and convergence characteristics of a design process plan.

An alternative approach, accomplishing the same thing but based on different assumptions, can
be derived from the ideas of Fleury 13. Fleury applies the idea of diminishing returnslo conclude that a
general parameter optimization problem can be cast (at least locally) in the form:

objective: minimize w = wlxl + + wnxn

constraints: all(xl)-l + . . . + a1 + a10 2 O

A design variable yi may have to be transformed to Xi = (yi)-l depending on the local slopes of
the constraints and the
Fleury has also come
parameters.

objective function to ensure that the “law of diminishing returns” can be applied.
up with some ingenious heuristics to extend the approach to discrete design

drmwslmplmx

nowDmmlgn

mov.Slmplmr

175 85

n7 o

FIGURE 10. A DESIGNDECISION INTERFACE.

WALK-THROUGH IMPLEMENTATION. OF A HALE DESIGN

Users will have made several system-level choices prior to reaching the aircraft-related portion of
the interface which starts with the chart presented in Figure 11 below. This figure is a depiction of the

relationship of historical aircraft categories to one another. Users may choose an aircraft category by
clicking on any ellipsoidal area. Under each ellipse is an invisible button which is programmed to take
users to the branch of the interface designated specifically for the one particular case. Users may then
enter more detailed information about the specific aircraft they wish to investigate. Or, they may wish to
investigate several alternatives within one class of aircraft such as high altitude long endurance (HALE).
Figure 12 presents several choices within the HALE class. Users must make a decision which will again
branch the interface. HALE design considerations for each powertrain vary enough from one another to
warrant this further branch.

TRANSPORTS

.................................

0.001 L/ I I 0.001

0.05
h

0.04

0.1 1 .o 10.0 100 .o
PLATEORM WING LOADING (LBFISO ET)

FIGURE 11. HISTORICAL AIRCRAFT CATEGORIES.

i i
i

i i 4 i i

i i
i

i 1
f

1000 .o

10 20 30 40 50 60 70 80 0'

WING LOADING (LBE/SO FT)
FIGURE 12. HISTORICAL HALE AIRCRAFT CATEGORIES.

Once users have determined which category and sub-category to investigate, they may start
entering information about the specific aircraft they wish to model.

289

As an example, Figure 13 shows how a generic HALE mission profile may be described. This
schematic has invisible Hypercard fields adjacent to each mission leg label which users may tab through
when entering data. Tabbing is clockwise and returns users to the field in which they started. To exit,
users have choices of returning to a previous screen or going to the next by clicking on the "Done"
button. Returning to a previous screen voids entries and going to the next screen accepts them.

At this point, users have choices of investigating point designs or doing parametric analyses.
Parametric analyses start with defining ranges of design parameters to be investigated by using an entry
screen similar to that shown in Figure 14.

Mission Profi le EO be Modsled

Speci fy minimum requ i red a l t i t u d e
and eddi t i ona l requi rements:
.........,. 55 000 f t ...
... A --I^

... f i r a n s i t to
... 500 fpm

FIGURE 13. TYPICAL HALE MISSION PROFILE.

HIGH ALTITUDE L O N G E N D U R A N C E AIRCRAFT
PARAMETRIC SIZING M E T H O D O L O G Y

DATA E N T R Y CATEGORIES

DecLare destgn variables of tnreresr and ranges f o r each. Include
untcs f o r each ent ry . T a b c h r o u g k fields.

...

..a.tzy.!.oed..wel.g.h.t ... 200 t o 2 .I .. 000 l b f

...

FIGURE 14. PARAMETRIC DATA ENTRY SCREEN.

I
I 2 9 0

Output may be presented in several formats, one of which is presented in simplified form in Figure
15 below. At times, users may want to examine the effect of changes in propulsion cycle on figures of merit
for their chosen mission. Endurance is an obvious figure of merit with which to examine the effect of
propulsion cycle choice. Numeric and symbolic data may be manipulated to provide curves which identify
domains of endurance for which each propulsion cycle is best suited. Ideally, users would be able to click
on any point on these curves and examine calculated design parameters in more detail.

Endurance (hours)

FIGURE 15. EFFECT OF ENGINE CYCLE CHOICE ON ONE DESIGN PARAMETER.

A more useful format, perhaps, for these investigations of domains of design points which satisfy a
given set of conditions is a parametric plot such as Figure 16 below which is one of several parametric
plots created during a feasibility study of a microwave powered HALE aircraft 14. This plot would be the
result of calculations done after users have made branching choices inside the interface. The choices in
this case would be regeneratively powered HALE from Figure 11, microwave powered HALE from
Figure 12, and an alternative mission profile screen than Figure 12 since microwave HALE mission
tracks tend to be more or less circular when viewed from above. Figure 17 below presents a generic
microwave HALE mission data entry screen to act as an additional branch to Figure 13.

29 1

0 1 2 3 4 5 6 7 8 9 1
0.040

0.030

z
\
LI)
-Y

0
4
Q
Dc

v)
Q

v

.C

v) 0.020

f
0
4
I I

0
L

0.0 10

0.000

i p...

_
I

i i
' i
i

I

i ...

i i

1 ?
j

1 1

civT&@as:
M&;2aiid

w-

j i
:

i i i

................... I ... I!-......

F 3 - d

........ -T

1 2 :

i i

i

f i I i i
5& i j i i

i
-1- i wh$ i..." i ii :
$igl#wi

! ! I i

4 5 6 7 8 9 1

1.040

1.030

3.020

0.010

3.000

Wng Loading (kGlsq m)
FIGURE 16. TYPICAL PARAMETRIC PRESENTATION OF AIRCRAFT DESIGN DATA.

For a solar powered HALE, an additional mission description screen (Figure 18) branch from
Figure 13. Users would identify the part of the world over which a solar HALE would fly by clicking on
the general area and HyperTalk would record mouse position at the click. Mouse position could then be
converted to latitude and longitude by the card script. Given altitude and time of year, insolation could

POSSIBLE
SATELLITE DATA LINKS

PAYLOAD
DATA LINK

FIGURE 17. A GENERIC MICROWAVE HALE MISSION DESCRIPTION.

ORIGINAL PAGE IS
OF POOR QUALtTY

I 29 2

ORIGINAL PAGE IS
OF POOR QUALITY

Mission Envimnmrnt

..*.'
**. ..\. ,,...'. , . *' *.

.. '. -. -... *.

access global coordinates and upper air wind data for analysis.
FIGURE 18. BRANCH SCREEN FROM FIGURE 13 FOR SOLAR POWERED HALE AIRCRAFT.

.\
.\. \. '. *. **.

I

easily be computed using methods similar to those presented in ref. 15. Following mission data entry,
the interface could define payload dimensions and constraints with a screen similar to Figure 19. The
interface would then deal with the airframe by branching from a screen similar to Figure 3 to Figure 20 to
describe the structural concept.

II-
.O*.''' > , , a '

, ,8*

293

Thickness-ro -chard
Root 0.17

E x t e m d y braced 0 Tip 0.13
Sweep
Inboard ..Q
Outboard .O

.............................. 5"
-2"

Cantilevered.

..............................
Taper Ratio

Inboard ..!.:.!?
Outboard .0...7

Cantilevered with
stressed skin @

FIGURE 20. PRIMARY STRUCTURE SPECIFICATION FOR WINGS.

IMPLEMENTING THE DESIGN METHODOLOGY IN wlndFrame

Two critical questions arise concerning implementation of the high altitude long endurance aircraft
design methodology using windFrame . How do the design tasks outlined in the walkthrough.map

, onto the basic elements of the windFrame computer programming language for aircraft design? How
would some of the critical pieces of thewindFrarne design interface be implemented in Hypercard?
These implementation issues are addressed in this section.

The power loading and wing loading relationships shown in Figures 11 and 12 represent a
theoretical relationship between these parameters which all reasonable aircraft must satisfy, at least
approximately. The existence of such a relationship suggests that this part of the design methdology
should be implemented using the theories&Mode/s elements of windframe.

Several interesting issues arise at this point. Recall that the theories&Models elements of
windframe are conceptually at the intersection between system functions and alternative design
concepts. Yet, the wing loading/power loading plots are intended to identify classes of aircraft. The
designer is supposed to choose the class of aircraft that is most appropriate for the mission. From this
point of view, the Figure 11 and Figure 12 interfaces are designllecisions. The attributes to be
chosen are ranges of wing-loading and power loading. Can a convenient conceptElement be
identified in association with these attributes ? An aircraft conceptHement seems a likely choice.
The function element should probably be perform mlssion (Figure 13). The perform misslon
function will have some functionAttributes associated with it, specifying ranges, altitudes, maneuvers
and speeds. At the level of the historical aircraft categories designDecision , the level of
approximation employed in a theory/Mode/ describing how a given alternative (one of the aircraft
categories) performs the perform mission function is that gust loads, maneuver requirements and
loads, maximum speeds, payload/range/endurance requirements, structural and fuel weight fractions
associated with the mission determine an approximate relationship between the relative size of the
propulsion system (power loading) and the magnitude of the aerodynamic forces and moments
generated by the aircraft (wing loading).

This example indicates that the basic elements of the windFrame language provide an excellent
way to implement the walkthrough design process in Hypercard. However, the high altitude long
endurance aircraft design methodology as it has been developed so far does not make full use of the
expressive power of windFrame , at least for the historical aircraft categories designDecision

being considered here. The value of this expressive power can be seen if we consider a slightly
different use for the same windFrarne language elements. What if the designer wanted to assess the
impact of a new structural material or design concept, a new set of design criteria for gust loads, or a
different approach to flying a certain mission? The same windFrarne conceptElernents,
theories&Mode/s, and designDecisions could be used to determine where the new concept falls on
the historical aircraft categories plot. This information could help to assess whether an existing
class of aircraft might be able to play a new role, or to identify that a totally new class of aircraft is needed.

RESULTS AND CONCLUSIONS

Significant progress toward the development of windFrarne has been achieved. A carefully
thought-out design for the computer programming language has been developed. This design was
developed through walkthrough implementations of an existing high altitude long endurance aircraft
design methodology. Used with this methodology, windFrarne provides a convenient way to integrate
traditional aircraft design practice with systems engineering discipline. windFrame has also been
designed to provide support for "metaDesign", a process in which new technologies and evolving
requirements are rapidly integrated into design concepts by "designing the design process"
concurrently with the design of the aircraft.

Design decision-making is the primary emphasis for the design approach embodied in the
windFrarne computer programming language for design. The highly graphics/user interface-oriented
programming style supported by Hypercard is a particularly compatible approach. Key elements of the
decision support interface have been prototyped in HyperTalk and integrated with designer interface
prototypes developed as part of the walkthrough implementation. Together, these Hypercard
computer programs provide a prototype of the windFrarne language which can be used for concept
demonstration. Interested readers may wish to obtain references 16 through 18. These references are
Hypercard stacks containing demonstrations of user interfaces and other aspects of the prototype
windFrarne design language. They are available through David Hall Consulting or NASNAmes
Research Center Advanced Plans and Programs Office.

REFERENCES

1.

2.

3.

4.

5.

Stinton, Darrol P., The D d a n of the Aer- , Van Nostrand ReinholdCompany, New York,
1983.

Abelson, Harold & Sussman, Gerald & Julie, w u r e a nd lnte rDretat ion of ComDuter
p r o a r m , The MIT Press, McGraw-Hill Book Company, Cambridge, Massachusetts, 1985.

Elias, Antonio L., "Knowledge Engineering of the Aircraft Design Process", Chapter 6 in
ed Prob lem So Iving, Kowalic, J.S., ed., Prentice-Hall, Englewood Cliffs, New

Jersey, 1985.

Kolb, M.A., "A Flexible Aid for Conceptual Design based on Constraint
Propagation and Component-modelling", AIAA-88-4427 ,AIAA/AHS/ASEE Aircraft Design,
Systems, and Operations Meeting, Sept. '88

Rosenfeld, L., "Intelligent CAD Systems - CAEDM for the ~ O ' S " , 6th National Conference on
University Programs in Computer-Aided Engineering, Design, and Manufacturing, June 1988,
Atlanta, Georgia.

295

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bouchard, E.E, "Applications of AI Technology to Aeronautical Systems Design", National
Conference on University Programs in Computer-Aided Engineering, Design, and
Manufacturing, June 1988, Atlanta, Georgia.

Floyd, Bryan, "Synergistic Information Systems", 6th National Conference on University
Programs in Computer-Aided Engineering, Design, and Manufacturing, June 1988, Atlanta,
Georgia.

Steinke, G., "Engineering by the Book . . . And On-Line", Mechanical Engineering, November
1985.

Anonymous, Apple M&ntosh HvpeOrd User's Guide ' , Apple Computer, Inc., Cupertino,
California, 1987.

Brei, M.L., et al., Arch*- Integration Fkg!Jirements for an ULCF Des ian Fnvironment,
IDA Paper P-2063, Institute for Defense Analyses, Alexandria,Virginia, April 1988.

Anonymous, V e e r i n a tdmaguwnt Gu ide, Defense System Management
College, Contract MDA 903-82-C-0339, Lockheed Missiles andspace Company, lnc., October
1883.

Anonymous, m e m e Reference Manual , Semantic Microsystems, Inc., Beaverton,
Oregon, 1986.

Fleury, C., and Schmit, L.,"Discrete-Continuous Variable Synthesis Using Dual Methods", AlAA
Journal, v. 16, no. 12, December 1980.

Bouquet, Donald L., Hall, David W. and McElveen, R. Parker,ll, "Feasibility Study of a Carbon
Dioxide Observation Platform System", NASNMArshall Space Flight Center Contractor Report,
1987.

Hall, D.W., Fortenbach, C.D., Dimiceli, E.V. and Parks, R.W., "Feasibility of Solar Powered
Aircraft and Associated PowerTrains", NASA/Langley Research Center C ontractor Report
3899, 1982.

Hall: D.W., "A Guided Tour of Our Developing HALE Methodology", Hypercard stack, David Hall
Consulting, Sunnyvale, CA, March 1988.

Hall, D.W., "Development of an Integrated Design System for High Altitude Long Endurance
Aircraft for Microcomputer Systems", Hypercard stack, David Hall Consulting, Sunnyvale, CA,
March 1988.

Hall, D.W. and Rogan, J.E., "Development of an Integrated Design System for High Altitude
Long Endurance Aircraft for Microcomputer Systems", Hypercard stack, David Hall Consulting,
Sunnyvale, CA, June 1988.

